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Graph Matching-Based Algorithms for FPGA Segmentation Design �yYao-Wen Chang1, Jai-Ming Lin1, and D. F. Wong21Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan2Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712, USAAbstractProcess technology advances will soon make the one-milliongate FPGA a reality. A key issue that needs to be solvedfor the large-scale FPGAs to realize their full potential liesin the design of their segmentation architectures [10]. One-dimensional segmentation designs have been studied to somedegree in much of the literature; most of the previously pro-posed methods are based on stochastic or analytical analysis.In this paper, we address a new direction for studying segmen-tation architectures. Our method is based on graph-theoreticformulation. We �rst formulate a net matching problem andpresent a polynomial-time optimal algorithm to solve the prob-lem. Based on the solution to the problem, we develop an ef-fective and e�cient matching-based algorithm for FPGA seg-mentation designs. Experimental results show that our methodsigni�cantly outperforms previous work. For example, ourmethod achieves averages of 18.2% and 8.9% improvementsin routability, compared with the work in [14] and the mostrecent work in [7], respectively. More importantly, our ap-proaches are very 
exible and can readily extend to higher-order segmentation designs (e.g., two- or three-dimensionalsegmentation design, etc), which are crucial to the design oflarge-scale FPGAs.1 IntroductionWith the advances in process technology, one-million gate Field-Programmable Gate Arrays (FPGAs) will soon become available.A key issue that needs to be solved for the large-scale FPGAs torealize their full potential lies in the design of their routing archi-tectures [10].1.1 FPGA ArchitecturesFigures 1(a) and (b) show two major types of FPGA architec-tures: array-based [2, 12] and row-based FPGAs [1, 3]. An array-based FPGA (see Figure 1(a)) is composed of a two-dimensionalarray of logic modules that can be connected with general routingresources. The logic modules (denoted by L) are used to implementlogic functions. The routing resources comprise vertical and hori-zontal channels. A cross area of vertical and horizontal channels isreferred to as a switch module (denoted by S). Each side of a switchmodule is linked with a set of segments. Segments on di�erent sidesof a switch module can be connected together through the switchmodule to form a longer connection. The routing channels in an�The work of Yao-Wen Chang and Jai-Ming Lin was par-tially supported by the National Science Council of Taiwan ROCunder Grant No. NSC-87-2215-E-009-041. E-mail: fywchang,gis85504g@cis.nctu.edu.twyThe work of D.F. Wong was partially supported by the TexasAdvanced Research Program under Grant No. 003658288. E-mail:wong@cs.utexas.edu

array-based FPGA usually consist of various types of interconnect,distinguished by the relative length of their segments. For example,the routing channel in a Xilinx XC4000EX-series FPGA containssingle-length lines, double-length lines, quad-length lines, and long-lines [12]. (Figure 2 shows three types of segments in a routingchannel; note that quad-length lines are not shown in the �gure.)The single-length lines form a grid of horizontal and vertical linesthat intersect at switch modules. The double-length (quad-length)lines consist of a grid of segments twice (quadruple) as long as thesingle-length lines. The longlines are a grid of segments that runthe entire vertical or horizontal channel.
(b)

horizontal segments

vertical 
segments

horizontal 
switch

logic 
modules

horizontal
channels

L

S

LLLL

L

L

LLLL

LL

LLL

SS

S S S

SSS
switch 
modules

cross 
switch

 (a)

vertical channels
logic modules

Figure 1: (a) The array-based FPGA architecture. (b) Therow-based FPGA architecture.
S

LLLL

L L L L

SSS S
double−length lines

longlines

logic 
modules

single−length lines

switch
modules

Figure 2: Three types of segments in a routing channel of thearray-based FPGA.The architecture of a row-based FPGA (see Figure 1(b)) is anal-ogous to a standard cell. The logic modules are placed in parallel inprede�ned locations, and channels are settled between two neigh-boring rows of logic modules. Each logic module is linked withvertical segments for input and output. A vertical segment can beconnected to a horizontal segment by programming a cross switch(denoted by 
) to be ON. The routing tracks are divided into sev-eral segments of di�erent lengths. Two neighboring segments canbe connected together to establish a longer connection by program-ming the incident horizontal switch (denoted by 
) to be ON.1.2 MotivationUnlike the traditional ASIC, the routing resources in an FPGAare prefabricated in the chip, and routing in an FPGA is performed
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by programming switches to make connections. The switches usu-ally have high resistance and capacitance, and thus incur signi�-cant delays. To achieve better performance, each track should con-tain fewer horizontal switches (i.e., each segment has longer lengthand each track contains fewer segments). However, this would re-duce routability and waste more wire lengths. On the other hand,if a track contains more horizontal switches (i.e., each segmenthas shorter length and each track contains more segments), netscan be routed with more 
exibility and less waste of wire lengths.However, this would sacri�ce performance. This trade-o� betweenperformance and routability presents a segmentation design prob-lem: How to determine a segmentation distribution to maximizethe routability under performance constraints?Example 1 Figure 3 shows a set of three nets n1; n2, and n3 to berouted in two di�erent segmented routing channels with two trackseach. Each horizontal switch partitions a track into two segments.For example, in Figure 3(a), Track 1 consists of two segments [1,2] and [3, 8], separated by the horizontal switch located betweenColumns 2 and 3. If each net can use at most one segment forrouting, then nets n1; n2, and n3 can not be routed simultaneouslyusing the segmented channel shown in Figure 3(a); however, theycan be routed if each net is allowed to use up to two segments.On the other hand, the three nets are always routable on the seg-mented channel shown in Figure 3(b). This example shows thatsegmentation designs could deeply in
uence the routability of anFPGA.
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Track 2Figure 3: Routing three nets with two wire segments.Rose and Hill in [10] emphasized that segmentation distributionwould become a key challenge in large-scale FPGA design. Theypointed out that even if one-million gate FPGAs became availabletoday, physical design for these devices could be di�cult becausethe routing delays and resource utilization could not be handledwell and it is thus hard to realize the full potential of a large-scaleFPGA. A well-designed segmentation can reduce not only routingdelays but also waste of wire lengths. Therefore, the segmentationdesign problem will become even more important when the age ofone-million gate is coming.1.3 Previous WorkChannel segmentation designs have been studied to some degreein much of the literature [4, 7, 9, 11, 14]. El Gamal et al. showedthat with appropriate arrangement of segment lengths, a segmentedrouting channel can achieve comparable routability to a customizedrouting channel [4]. For the channel segmentation design problem,Roy and Mehendale �rst presented a stochastic method which ap-proximates a given segment length distribution [11]. Zhu and Wongin [14] also presented an algorithm for the channel segmentationdesign problem based on a stochastic analysis. Pedram et al. pre-sented an analytical model for the design and analysis of e�ectivesegmented channel architectures [9].Not much work has been reported for the two-dimensional seg-mentation design for the array-based FPGA. Further, existing work

for the two-dimensional segmentation design is based on integrationof the one-dimensional channel segmentation design. Zhu, Wong,and Chang observed that the two-dimensional segmentation designcan be done in two stages: channel segmentation design followedby switch-module design [13]. Based on the similar idea, Mak andWong recently employed a decomposition procedure and showed indetails how the two-stage approach can be done [7].1.4 Our ContributionsMost of the previously proposed methods are based on stochasticor analytical formulation. In this paper, we address a new directionfor studying segmentation architectures. Our method is based ongraph-theoretic formulation. We �rst formulate a net matchingproblem and present a polynomial-time optimal algorithm to solvethe problem. Using the solution to the problem as a subroutine,we develop an e�ective and e�cient matching-based algorithm forFPGA segmentation designs. Experimental results show that ourmethod signi�cantly outperforms the previous work. For example,our method achieves averages of 18.2% and 8.9% improvements inroutability, compared with the work in [14] and [7], respectively.(Note that the most recent work [7] reports the best results amongall previous work.) More importantly, our approaches are very
exible and can readily extend to higher-order segmentation designs(e.g., two- or three-dimensional segmentation design, etc) with onlyminor modi�cations. It should be pointed out that this scalabilityis crucial to the design of large-scale FPGAs.2 Problem FormulationIn this paper, we will use the following notation:� L: Length of a channel, measured in the number of columns.We number the columns from 1 to L+ 1.� T : Number of tracks in the channel.� K: Maximum number of segments allowed for routing a sin-gle net.� m: Number of routing instances. A routing instance consistsof a set of nets for routing.� n: Number of nets in each routing instance.� d: Number of dimensions for routing; d = 1 and 2 for channeland array-based routing/segmentation, respectively.For the channel segmentation, each net is an interval which canbe characterized by its leftmost and rightmost points. The leftmostand rightmost points of net i are represented by lefti and righti,respectively. The span of net (interval) i is from lefti to righti,denoted by [lefti; righti]. One net overlaps another if the spansof the two nets intersect. A segment covers a net (interval) if thespan of the net is within the bounds of the segment. A set S ofsegments covers a routing instance I (i.e., a set of nets) if for eachnet i in I, there exists a segment s in S that covers i and no twonets are covered by the same segment. For the array-based andhigher-dimensional segmentation, the representation of a net andthe de�nitions of span and cover need to be modi�ed to considerthe two-dimensional situations. We will discuss the modi�cationsin Section 4.For the K-segment routing, each net can use up to K segments.ForK = 1, a net can be routed on a segment as long as the segmentcovers the net. When one segment is assigned to a net, the segmentis occupied and not allowed to be used for any other net. It is clearthat if two nets overlap, they cannot be routed on the same track.For K � 2, each net can use multiple segments by programmingcorresponding horizontal switches to connect the segments. How-ever, like 1-segment routing, each segment cannot be occupied bymore than one net at a time.The d-dimensional segmentation design problem is formulatedas follows:� The d-Dimensional Segmentation Design Problem:Given L; T;K;m and n, design a d-dimensional segmentationto maximize the successful rate for K-segment routing.For a �xed K, we refer to the problem as the d-dimensionalK-segmentation design problem. When K � 2, it is also called thed-dimensional multi-segmentation design problem.
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3 One-Dimensional Segmentation De-signWe shall discuss our approach for one-dimensional segmentationdesign �rst. Our approach is motivated by the following observa-tions. Given m sets of routing instances, each with ni nets (in-tervals), i = 1; : : : ;m, designing a segmentation to maximize thesuccessful rate for 1-segment routing is closely related to construct-ing a set S of segments which can cover each of them sets of routinginstances (one set at a time). It is not di�cult to see that usingsuch set S of segments for 1-segment routing would result in 100%routing completion. However, there is usually a limitation on thenumber of tracks T in a routing channel. Therefore, it is not al-ways possible to construct a channel formed by all the segmentsin S. Nevertheless, the set S of segments still gives a key insightinto the optimal segmentation architecture for the given routinginstances.Since S gives the optimal segmentation architecture, our goal isto construct a segmentation structure as close to S as possible. Ourmethod is based on graph-theoretic formulation. We �rst formulatea net matching problem to obtain amost economical set of segmentsthat can cover each of two input routing instances. Based on theweighted bipartite matching theory, we present a polynomial-timeoptimal algorithm to solve the net matching problem. Using thesolution to the problem as a subroutine, we then develop an e�ectivebottom-up matching-based algorithm for the segmentation designfor an arbitrary number of input routing instances. We shall �rstdiscuss the net matching problem.3.1 The Net Matching ProblemLet I be a �nite set of (horizontal) intervals (nets). Leti1 = [left1; right1] and i2 = [left2; right2] be two overlappingintervals. We de�ne Merge(i1; i2) as the interval i = [left; right],where left = minfleft1; left2g and right = maxfright1; right2g.It is clear that the length of interval i, denoted by len(i), is givenby right� left and the total length of all intervals in I, Length(I),is given byPi2I len(i).Let I and J be two �nite sets of intervals. A net match-ing M between I and J is a set of ordered pairs of intersect-ing intervals (i1; j1); (i2; j2); : : : ; (ik; jk), where A = fi1; i2; : : : ; ikgand B = fj1; j2; : : : ; jkg are two sets of distinct intervals from Iand J, respectively. We can replace i1 and j1 by Merge(i1; j1),replace i2 and j2 by Merge(i2; j2), : : :, and replace ik andjk by Merge(ik; jk). After the replacement, the set of in-tervals I [ J becomes Union(I; J) = (I � A) [ (J � B) [fMerge(i1; j1);Merge(i2; j2); : : : ;Merge(ik; jk)g.The Net Matching Problem is described as follows:� The Net Matching Problem: Given two �nite sets Iand J of intervals (nets), �nd a matching M such thatLength(Union(I; J)) is minimized.Based on the weighted bipartite matching theory, we present apolynomial-time optimal algorithm for the Net Matching Problem.We reduce the problem to computing the maximum matching in aweighted bipartite graph. Given two �nite sets I and J of intervals,we construct a weighted bipartite graph G = (U; V;E) as follows.For each interval i in I (j in J), we introduce a vertex ui (vj) in theset U (V ) of vertices. For each pair of overlapping intervals, p; q,p 2 I and q 2 J, connect up to vq by an edge epq = (up; vq) witha weight computed by the weight function � : E ! Z+ de�ned asfollows:�(epq) = minfrightp; rightqg �maxfleftp; leftqg: (1)Then we can apply a maximum weighted bipartite matching algo-rithm [8] on G to solve the Net Matching Problem optimally.A matching M of a graph H = (V;E) is a subset of the edgeswith the property that no two edges of M share the same vertex.Edges in M are called matched edges; they are unmatched , oth-erwise. Let Matched(I; J) be the set of the matched edges in aweighted bipartite matching on the graph induced by the �nite setsI and J of intervals, and Weight(F ), F � E, be the total weightof the edges in F . We have the following lemma and theorem.Lemma 1 Length(Union(I; J)) = Length(I) + Length(J) �Weight(Matched(I; J)).

Theorem 1 The maximum bipartite weighted matching algorithmoptimally solves the Net Matching Problem in O((n1+n2)3) time,where n1 and n2 are the numbers of nets in the two input sets.Example 2 Figure 4(a) shows two sets I = fi1; i2; i3; i4g andJ = fj1; j2; j3g of intervals (nets). The induced weighted bipartitegraph is given in Figure 4(b). The span of net i, [lefti; righti], isshown next to its corresponding vertex. The weight for each edge iscomputed by the function � and shown beside the edge. The max-imum weighted bipartite matching M between U = fu1; u2; u3; u4gand V = fv1; v2; v3g is illustrated in Figure 4(b) by heavy lines.In this example, M = f(u1; v1); (u2; v3); (u3; v2)g. Note that u4is unmatched. Figure 4(c) shows the resulting con�guration of re-placing i1 and j1 by Merge(i1; j1), i2 and j3 by Merge(i2; j3),and i3 and j2 by Merge(i3; j2). Let l1 = Merge(i1; j1); l2 =Merge(i2; j3); l3 = Merge(i3; j2), and l4 = i4. After the replace-ment, the set of intervals I[J becomes Union(I; J) = fl1; l2; l3; l4g.The reader can verify that Length(Union(I; J)) = len(l1) +len(l2)+ len(l3)+ len(l4) = 15 is the minimum possible total unionlength for merging I and J. (Note that Length(Union(I; J)) =Length(I) + Length(J)�Weight(Matched(I; J)) = 15).Note that �(epq) gives the overlap length between intervals pand q. Intuitively, this weight function measures the \similarity"between two intervals|the greater the weight, the more similar thetwo corresponding intervals. By merging intervals with greatestsimilarity, we can obtain a most economical (i.e., minimum totallength) set of segments that covers each of two input interval sets.
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4l = 4iFigure 4: A matching-and-merging example. (a) Two setsof nets. (b) The corresponding weighted bipartite graph. (c)The matching result for the two sets of nets.3.2 The Segmentation Design AlgorithmOur design algorithm consists of three stages: (1) the matching-and-merging stage, (2) the tuning stage, and (3) the �lling stage.In the matching-and-merging stage, we repeatedly apply the afore-mentioned weighted bipartite matching algorithm to merge inputrouting instances and �nd a set I of intervals that can cover eachof the input routing instances. In the tuning stage, we �nd a setI0 of intervals from I, I0 � I, which can be packed (routed) intoT tracks. In the �lling stage, we determine the switch locations onthe tracks and �ll the empty space between each pair of intervalsin the T tracks to form a set of segments.The matching-and-merging stage proceeds in a tree-like bottom-up manner. (The whole matching-and-merging process is illus-trated in Figure 5.) Given m routing instances R1; R2; : : : ; Rm,each with respective n1; n2; : : : ; nm nets, we apply the aforemen-tioned weighted bipartite matching algorithm to merge R1 and R2,R3 and R4, R5 and R6, : : :. (See the procedure Match and Merge()in Lines 5 and 8 of Figure 6.) If m is odd, then Rm remains un-merged. After the merge, the number of resulting instances reduces
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to dm=2e. Then the same merging process repeats for the newdm=2e routing instances. The process proceeds level by level in abottom-up manner until a �nal merged routing instance is obtained(see Figure 5).
merged routing instances routing instances

Iteration 1

Iteration 2

Iteration k

R1 R2 R3 R7 R85R4R 6R mRm−1R

FI
final merged 
result

Figure 5: The matching process.Let IF be the set of the intervals in the �nal merged routinginstance. We have the following theorem.Theorem 2 IF covers Ri, 8i; 1 � i � m.By Theorem 2, using a set S of segments covering IF for 1-segment routing can route all routing instances R1; R2; : : : ; Rm.As mentioned earlier, however, there is usually a limitation on thenumber of tracks T in a routing channel. Therefore, it is not alwayspossible to construct a channel formed by all the segments in S.In the tuning and the �lling stages, we construct a segmentationof T tracks from the �nal merged routing instance IF . First, weapply the basic left-edge algorithm [6] to route the intervals in IF .(See the procedure Route by Left Edge() in Line 11 of Figure 6.)We then sort the resulting tracks in the non-increasing order oftheir total lengths occupied by the intervals. The �rst T tracksare chosen for further construction, and the tuning stage is done.(See the procedure Tune Tracks() in Line 12 of Figure 6.) In the�lling stage, we determine the switch locations on the tracks and�ll the empty space between each pair of intervals in the T tracksto form a set of segments. To optimize the routability of a designedsegmentation, it is important to consider the positions for placinghorizontal switches. We have the following theorem to guide theplacement of horizontal switches.Theorem 3 For the uniform net distribution, a segmented routingtrack can cover the maximum number of nets when switches areevenly spaced on the track.Therefore, by Theorem 3, if there is an empty space betweentwo intervals on a track, we shall place a horizontal switch on theposition that makes the two resulting segments most balanced inlength. The procedure Fill Space() listed in Line 13 of Figure 6 isbased on Theorem 3 to �nd optimal positions for placing horizontalswitches. The whole segmentation design algorithm is summarizedin Figure 6.Theorem 4 Algorithm Seg Designer runs in O(m3n3) time,where m is the number of input routing instances and n is themaximum number of nets in a routing instance.For K-segmentation design (K � 2), all we need to do is split-ting each segment into K sections of equal length right after theabove-mentioned procedures. However, since the minimum lengthof a segment is one, it is impossible to partition an interval of lengthsmaller than 2K�1 into K segments. Speci�cally, we can partitionan interval of length l into at most dl=2e segments.

Algorithm: Seg Designer(m, R[i], T )Input: m|Number of routing instances;R[m]|R[i] is the i-th routing instance, 0 � i � m� 1;T|Maximum number of tracks in the channel.Output: S|The designed segmentation.Stage 1: Matching and Merging1 iteration dlog2me;2 for i 1 to iteration do3 if (m is even)4 for j  0 to m=2 � 1 do5 R[j] Match and Merge(R[2j], R[2j + 1]);6 else7 for j  0 to bm=2c � 1 do8 R[j] Match and Merge(R[2j], R[2j + 1]);9 R[j + 1] R[m� 1];10 m dm=2e;Stage 2: Tuning11 Track[t] Route by Left Edge(R[0]);12 Track[T ] Tune Tracks(Track[t]);Stage 3: Filling13 S  Fill Space(Track[T ]);14 return S.Figure 6: The algorithm for segmentation design.4 Two-Dimensional Segmentation De-signOur approaches are very 
exible and can readily extend tohigher-order segmentation designs (e.g., two- or three-dimensionalsegmentation design, etc) with only minor modi�cations.We brie
y describe how to extend the matching-based algorithmto the two-dimensional segemtation design. (For the higher-ordersegmentation design, the extension is similar.) The most signi�cantdi�erence between designs for one- and two-dimensional segmenta-tions lies in the representation of a net. In the one-dimensionalsegmentation design, we can simply represent a net x by its span[leftx; rightx]. The representation of a net in two-dimensionalchannels is more sophisticated. (See Figure 7 for the represen-tation.) For a p� q (number of logic modules) array-based FPGA,there are p�1 horizontal and q�1 vertical routing channels. We la-bel the channels in an array-based FPGA 1; 2; : : : ; p�1 from the topto the bottom, and p; p+1; : : : ; p+ q� 2 from the left to the right.If a net runs through more than one channel (and/or more thanone track in a channel), we divide the net into a set of subnets, onesubnet for each channel (and/or for each track). Each subnet xi inchannel cxi is represented by the three tuple [leftxi ; rightxi ; cxi ],where leftxi and rightxi are the leftmost and rightmost points ofthe subnet. Then, a net can be represented by a set of the threetuples for its subnets.The Net Matching Problem described in Section 3 is extended tohandle two-dimensional nets and called The Two-Dimensional NetMatching Problem. The Two-Dimensional Net Matching Problemcan also be optimally solved by reducing the problem to computingthe maximum matching in a weighted bipartite graph. Given two�nite sets I and J of nets, we construct a weighted bipartite graphG = (U; V;E) as follows. For each net i in I (j in J), we introduce avertex ui (vj) in the set U (V ) of vertices. One net overlaps anotherif the spans of any pair of subnets of the two nets intersect. Foreach pair of overlapping nets, p; q, p 2 I and q 2 J, with the respec-tive subnets f[leftp1 ; rightp1 ; cp1 ]; : : : ; [leftph ; rightph ; cph ]g andf[leftq1 ; rightq1 ; cq1 ]; : : : ; [leftqk ; rightqk ; cqk ]g, connect up to vqby an edge epq = (up; vq) with a weight computed by the weight
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Figure 7: Represetation of a net in an array-based FPGA.function � : E ! Z+ de�ned as follows:�(epq) = Xcpi=cqj ;pi;qj �(pi; qj); (2)where �(pi; qj) = minfrightpi ; rightqj g � maxfleftpi ; leftqj g.Then we can apply a maximum weighted bipartite matching al-gorithm [8] on G to solve the net matching problem optimally. Wehave the following theorem.Theorem 5 The maximum bipartite weighted matching algorithmoptimally solves the Two-Dimensional Net Matching Problem inO((n1 + n2)3 + r1r2) time, where n1 and n2 (r1 and r2) are thenumbers of nets (subnets) in the two input sets.The algorithm for the two-dimensional segmentation design,2D Seg Designer, is very similar to that for the one-dimensionaldesign described in the previous section. The design algorithm fortwo-dimensional segmentation also consists of the three stages: (1)the matching-and-merging stage, (2) the tuning stage, and (3) the�lling stage. In the matching-and-merging stage, we repeatedly ap-ply the aforementioned weighted bipartite matching algorithm tomerge two-dimensional input routing instances to �nd a set I ofnets that can cover each of the input routing instances. In the tun-ing and the �lling stages, we construct tracks channel by channelby considering the subnets of I in each channel obtained in thematching-and-merging stage. For the �lling stage, the process issimilar to that for the one-dimensional segmentation design. Thefollowing theorem gives the time complexity of our algorithm.Theorem 6 Algorithm 2D Seg Designer runs in O(m3(n3 + r2))time, where m is the number of input routing instances and n(r)is the maximum number of nets (subnets) in a routing instance.5 Experimental ResultsWe implemented our segmentation design algorithms in theC++ programming language on a PC with a Pentium 166 micro-processor and 32 MB RAM. The weighted bipartite matching codewas adopted from the public LEDA package. The routability ofthe architectures designed by our algorithms was tested using the1- and the multi-segment routing algorithms by Zhu and Wong [14].In addition to the notation mentioned in Section 2, the followingnotation is also needed to explain our experimental procedures.� D: Maximum number of net terminals at a column.� f(l): Probability that a net is of length l.The input routing instances were generated by the programsused in [7] and [14]. The �rst set of ten net distributions is based onthe parameters L = 100, T = 36, and D = 12 which are close to therow-based architectures used by Actel FPGAs [1]. DistributionsDi,i = 1; 2; : : : ; 7 are de�ned as follows. If f(l) = (p1; p2; p3; p4; p5),then the probability that a net has length between 0:2(j � 1)Land 0:2jL is equal to pj=P1�k�5 pk. \Ge", \No", and \Po" aregeometric, normal, and Poisson distributions, respectively. For eachnet distribution, 300 routing instances were generated.The ratio of routing success was measured by the threshold den-sity dT de�ned in [14]. dT means the smallest channel density

d such that less than 90% of the channels with density d in thedistribution are successfully routed.Table 1 lists the respective comparisons for one- and two-segment routing between our designs and those in Zhu andWong [14] based on the parameters L = 100; T = 36, and D = 12which were used in [14]. The results show that our designs outper-form those in [14] by averages of 24.0% and 12.9% improvementsin routability for one- and two-segment routing, respectively.The channel segmentation designs in [7] were targeted for array-based FPGAs. The parameters used for net distributions were L =20; T = 18, and D = 6 for two-segment design and L = 50; T =24, and D = 8 for three-segment design. The results, reportedin Table 2, show that our method signi�cantly outperforms theprevious work in [7] and [14]. Our designs achieve averages of17.9% and 8.9% improvements in routability, compared with thework in [14] and the most recent work in [7], respectively. Figure 8shows our 1-segment channel segmentation design for distributionD1 using the parameters L = 100; T = 36, D = 12, and K = 1.

Figure 8: A channel segmentation designed by our algorithm(L = 100; T = 36; D = 12; K = 1, Distribution D1).Our design algorithms are quite e�cient. The empirical runtimes for the largest set of designs (L = 100; T = 36; D = 12,and K = 2) ranged from 10 sec for Distribution D2 to 78 secfor Distribution D7 (with an average run time of about 30 sec).Although the theoretic analysis gives O(m3n3)-time complexity forour algorithm, the empirical run time for the n term is close toO(n lg n), instead of O(n3). The reason is that most of the nets intwo input routing instances were merged together. Therefore, thenumber of nets in a merged instance grew only linearly, instead ofexponentially. In Figure 9, the average number of nets per routinginstance is plotted as a function of the number of iterations (inthe matching-and-merging stage) for each of the ten distributionslisted in Table 1. The curves in Figure 9 exhibit the linearity of theempirical growth rates for the average number of nets per routinginstance.6 ConclusionWe have presented a new direction based on the graph-matchingformulation for studying FPGA segmentation design. The ap-proach is so e�ective, e�cient, and 
exible that it can easily extendto more sophisticated segmentation designs. Future work lies in theextension of higher-order segmentation designs. Also, the results ofthe matching-and-merging stage could be sensitive to the pairingof input routing instances. The general graph-matching algorithmmight be a promising solution to the best pairing of the routinginstances.AcknowledgmentsThe authors would like to thank Kai Zhu and Wai Kei Mak forproviding us with their packages for segmentation designs.References[1] Actel Corporation, FPGA Data Book and Design Guide,1996.
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One-segment routing (K = 1) Two-segment routing (K = 2)f(l) [13] Ours [13] OursdT dT =T dT dT=T dT dT =T dT dT =TD1 (1, 1, 1, 1, 1) 24 0.67 31 0.86 29 0.81 33 0.92D2 (.1, .3, .5, .8, 1) 32 0.89 34 0.94 34 0.94 35 0.97D3 (1, .8, .5, .3, .1) 23 0.64 28 0.78 28 0.78 32 0.89D4 (1, .5, .3, .1, 0) 26 0.72 27 0.75 26 0.72 32 0.89D5 (1, .5, .3, .5, 1) 20 0.56 30 0.83 27 0.75 33 0.92D6 (.2, .5, 1, .5, .2) 29 0.81 33 0.92 33 0.92 35 0.97D7 (1, .2, .1, 0, 0) 22 0.61 27 0.75 22 0.61 28 0.78Ge 
l,
 = 0.95 21 0.58 28 0.78 25 0.70 30 0.83No � = 35, �2 = 100 25 0.70 31 0.86 32 0.89 33 0.92Po �le��=l!, � = 20.0 20 0.56 31 0.86 30 0.83 32 0.89Avg 24.2 0.674 30.0 0.833 28.6 0.795 32.3 0.889Table 1: One- and two-segment routing results (L = 100; T = 36; D = 12).Two-segment routing (K = 2) Three-segment routing (K = 3)f(l) [14] [7] Ours [14] [7] OursdT dT=T dT dT=T dT dT=T dT dT =T dT dT =T dT dT =Tb1 (1, 1, 1, 1, 1) 15 0.83 17 0.94 17 0.94 21 0.88 22 0.92 23 0.96b2 (1, .8, .5, .3, .1) 14 0.78 15 0.83 16 0.89 17 0.71 21 0.88 24 1.00b3 (1, .5, .3, .1, 0) 13 0.72 14 0.78 17 0.94 18 0.75 21 0.88 21 0.88b4 (1, .5, .3, .5, 1) 13 0.72 16 0.89 16 0.89 19 0.79 22 0.92 21 0.88b5 (.2, .5, 1, .5, .2) 16 0.89 15 0.83 17 0.94 22 0.92 22 0.92 22 0.92b6 (1, .2, .1, 0, 0) 11 0.61 14 0.78 17 0.94 17 0.71 20 0.83 22 0.92Ge 
l,
 = 0.7 12 0.67 13 0.72 16 0.89 20 0.83 20 0.83 22 0.92No � = 4, �2 = 10 16 0.89 15 0.83 17 0.94 21 0.88 20 0.83 21 0.88Po �le��=l!, � = 3.0 13 0.72 15 0.83 16 0.89 19 0.79 19 0.79 23 0.96Avg 13.7 0.759 14.9 0.826 16.6 0.917 19.3 0.807 20.8 0.867 22.1 0.924Table 2: Two- and three- segment routing results (for K = 2: L = 20; T = 18; D = 6; for K = 3: L = 50; T = 24; D = 8).
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