Graph Matching-Based Algorithms for FPGA Segmentation Design *f

Yao-Wen Chang', Jai-Ming Lin', and D. F. Wong?

!Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan

2Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712, USA

Abstract

Process technology advances will soon make the one-million
gate FPGA a reality. A key issue that needs to be solved
for the large-scale FPGAs to realize their full potential lies
in the design of their segmentation architectures [10]. Omne-
dimensional segmentation designs have been studied to some
degree in much of the literature; most of the previously pro-
posed methods are based on stochastic or analytical analysis.
In this paper, we address a new direction for studying segmen-
tation architectures. Our method is based on graph-theoretic
formulation. We first formulate a net matching problem and
present a polynomial-time optimal algorithm to solve the prob-
lem. Based on the solution to the problem, we develop an ef-
fective and efficient matching-based algorithm for FPGA seg-
mentation designs. Fxperimental results show that our method
significantly outperforms previous work. For ezample, our
method achieves averages of 18.2% and 8.9% improvements
in routability, compared with the work in [1/] and the most
recent work in [7], respectively. More importantly, our ap-
proaches are very flexible and can readily extend to higher-
order segmentation designs (e.g., two- or three-dimensional
segmentation design, etc), which are crucial to the design of
large-scale FPGAs.

1 Introduction

With the advances in process technology, one-million gate Field-
Programmable Gate Arrays (FPGAs) will soon become available.
A key issue that needs to be solved for the large-scale FPGAs to
realize their full potential lies in the design of their routing archi-
tectures [10].

1.1 FPGA Architectures

Figures 1(a) and (b) show two major types of FPGA architec-
tures: array-based [2, 12] and row-based FPGAs [1, 3]. An array-
based FPGA (see Figure 1(a)) is composed of a two-dimensional
array of logic modules that can be connected with general routing
resources. The logic modules (denoted by L) are used to implement
logic functions. The routing resources comprise vertical and hori-
zontal channels. A cross area of vertical and horizontal channels is
referred to as a switch module (denoted by S). Each side of a switch
module is linked with a set of segments. Segments on different sides
of a switch module can be connected together through the switch
module to form a longer connection. The routing channels in an
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array-based FPGA usually consist of various types of interconnect,
distinguished by the relative length of their segments. For example,
the routing channel in a Xilinx XC4000EX-series FPGA contains
single-length lines, double-length lines, quad-length lines, and long-
lines [12]. (Figure 2 shows three types of segments in a routing
channel; note that quad-length lines are not shown in the figure.)
The single-length lines form a grid of horizontal and vertical lines
that intersect at switch modules. The double-length (quad-length)
lines consist of a grid of segments twice (quadruple) as long as the
single-length lines. The longlines are a grid of segments that run
the entire vertical or horizontal channel.
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Figure 1: (a) The array-based FPGA architecture. (b) The
row-based FPGA architecture.
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Figure 2: Three types of segments in a routing channel of the
array-based FPGA.

The architecture of a row-based FPGA (see Figure 1(b)) is anal-
ogous to a standard cell. The logic modules are placed in parallel in
predefined locations, and channels are settled between two neigh-
boring rows of logic modules. Each logic module is linked with
vertical segments for input and output. A vertical segment can be
connected to a horizontal segment by programming a cross switch
(denoted by ®) to be ON. The routing tracks are divided into sev-
eral segments of different lengths. Two neighboring segments can
be connected together to establish a longer connection by program-
ming the incident horizontal switch (denoted by O) to be ON.
1.2 DMotivation

Unlike the traditional ASIC, the routing resources in an FPGA
are prefabricated in the chip, and routing in an FPGA is performed
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by programming switches to make connections. The switches usu-
ally have high resistance and capacitance, and thus incur signifi-
cant delays. To achieve better performance, each track should con-
tain fewer horizontal switches (i.e., each segment has longer length
and each track contains fewer segments). However, this would re-
duce routability and waste more wire lengths. On the other hand,
if a track contains more horizontal switches (i.e., each segment
has shorter length and each track contains more segments), nets
can be routed with more flexibility and less waste of wire lengths.
However, this would sacrifice performance. This trade-off between
performance and routability presents a segmentation design prob-
lem: How to determine a segmentation distribution to mazimize
the routability under performance constraints?

Example 1 Figure 3 shows a set of three nets ni,n2, and n3 to be
routed in two different segmented routing channels with two tracks
each. Fach horizontal switch partitions a track into two segments.
For example, in Figure 3(a), Track 1 consists of two segments [1,
2] and [3, 8], separated by the horizontal switch located between
Columns 2 and 3. If each net can use at most one segment for
routing, then nets ni1,n2, and ng can not be routed simultaneously
using the segmented channel shown in Figure 3(a); however, they
can be routed if each net is allowed to use up to two segments.
On the other hand, the three nets are always routable on the seg-
mented channel shown in Figure 3(b). This example shows that
segmentation designs could deeply influence the routability of an
FPGA.

Figure 3: Routing three nets with two wire segments.

Rose and Hill in [10] emphasized that segmentation distribution
would become a key challenge in large-scale FPGA design. They
pointed out that even if one-million gate FPGAs became available
today, physical design for these devices could be difficult because
the routing delays and resource utilization could not be handled
well and it is thus hard to realize the full potential of a large-scale
FPGA. A well-designed segmentation can reduce not only routing
delays but also waste of wire lengths. Therefore, the segmentation
design problem will become even more important when the age of
one-million gate is coming.

1.3 Previous Work

Channel segmentation designs have been studied to some degree
in much of the literature [4, 7, 9, 11, 14]. El Gamal et al. showed
that with appropriate arrangement of segment lengths, a segmented
routing channel can achieve comparable routability to a customized
routing channel [4]. For the channel segmentation design problem,
Roy and Mehendale first presented a stochastic method which ap-
proximates a given segment length distribution [11]. Zhu and Wong
in [14] also presented an algorithm for the channel segmentation
design problem based on a stochastic analysis. Pedram et al. pre-
sented an analytical model for the design and analysis of effective
segmented channel architectures [9].

Not much work has been reported for the two-dimensional seg-
mentation design for the array-based FPGA. Further, existing work

for the two-dimensional segmentation design is based on integration
of the one-dimensional channel segmentation design. Zhu, Wong,
and Chang observed that the two-dimensional segmentation design
can be done in two stages: channel segmentation design followed
by switch-module design [13]. Based on the similar idea, Mak and
Wong recently employed a decomposition procedure and showed in
details how the two-stage approach can be done [7].

1.4 Our Contributions

Most of the previously proposed methods are based on stochastic
or analytical formulation. In this paper, we address a new direction
for studying segmentation architectures. Our method is based on
graph-theoretic formulation. We first formulate a net matching
problem and present a polynomial-time optimal algorithm to solve
the problem. Using the solution to the problem as a subroutine,
we develop an effective and efficient matching-based algorithm for
FPGA segmentation designs. Experimental results show that our
method significantly outperforms the previous work. For example,
our method achieves averages of 18.2% and 8.9% improvements in
routability, compared with the work in [14] and [7], respectively.
(Note that the most recent work [7] reports the best results among
all previous work.) More importantly, our approaches are very
flexible and can readily extend to higher-order segmentation designs
(e.g., two- or three-dimensional segmentation design, etc) with only
minor modifications. Tt should be pointed out that this scalability
is crucial to the design of large-scale FPGAs.

2 Problem Formulation
In this paper, we will use the following notation:

e [.: Length of a channel, measured in the number of columns.
‘We number the columns from 1 to L + 1.

e T Number of tracks in the channel.

e K: Maximum number of segments allowed for routing a sin-
gle net.

e m: Number of routing instances. A routing instance consists
of a set of nets for routing.

e n: Number of nets in each routing instance.

e d: Number of dimensions for routing; d = 1 and 2 for channel
and array-based routing/segmentation, respectively.

For the channel segmentation, each net is an interval which can
be characterized by its leftmost and rightmost points. The leftmost
and rightmost points of net i are represented by left; and right;,
respectively. The span of net (interval) 4 is from left; to right;,
denoted by [left;, right;]. One net overlaps another if the spans
of the two nets intersect. A segment covers a net (interval) if the
span of the net is within the bounds of the segment. A set S of
segments covers a routing instance I (i.e., a set of nets) if for each
net ¢ in I, there exists a segment s in S that covers ¢« and no two
nets are covered by the same segment. For the array-based and
higher-dimensional segmentation, the representation of a net and
the definitions of span and cover need to be modified to consider
the two-dimensional situations. We will discuss the modifications
in Section 4.

For the K-segment routing, each net can use up to K segments.
For K = 1, a net can be routed on a segment as long as the segment
covers the net. When one segment is assigned to a net, the segment
is occupied and not allowed to be used for any other net. It is clear
that if two nets overlap, they cannot be routed on the same track.
For K > 2, each net can use multiple segments by programming
corresponding horizontal switches to connect the segments. How-
ever, like 1-segment routing, each segment cannot be occupied by
more than one net at a time.

The d-dimensional segmentation design problem is formulated
as follows:

e The d-Dimensional Segmentation Design Problem:
Given L, T, K, m and n, design a d-dimensional segmentation
to maximize the successful rate for K-segment routing.

For a fixed K, we refer to the problem as the d-dimensional
K -segmentation design problem. When K > 2, it is also called the
d-dimensional multi-segmentation design problem.
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3 One-Dimensional
sign

We shall discuss our approach for one-dimensional segmentation
design first. Our approach is motivated by the following observa-
tions. Given m sets of routing instances, each with n; nets (in-
tervals), ¢ = 1,..., m, designing a segmentation to maximize the
successful rate for 1-segment routing is closely related to construct-
ing a set S of segments which can cover each of the m sets of routing
instances (one set at a time). It is not difficult to see that using
such set S of segments for 1-segment routing would result in 100%
routing completion. However, there is usually a limitation on the
number of tracks 7" in a routing channel. Therefore, it is not al-
ways possible to construct a channel formed by all the segments
in S. Nevertheless, the set S of segments still gives a key insight
into the optimal segmentation architecture for the given routing
instances.

Since S gives the optimal segmentation architecture, our goal is
to construct a segmentation structure as close to S as possible. Our
method is based on graph-theoretic formulation. We first formulate
a net matching problem to obtain a most economical set of segments
that can cover each of two input routing instances. Based on the
weighted bipartite matching theory, we present a polynomial-time
optimal algorithm to solve the net matching problem. Using the
solution to the problem as a subroutine, we then develop an effective
bottom-up matching-based algorithm for the segmentation design
for an arbitrary number of input routing instances. We shall first
discuss the net matching problem.

3.1 The Net Matching Problem

Let I be a finite set of (horizontal) intervals (nets). Let
i1 = [lefti,right1] and i2 = [left2,right2] be two overlapping
intervals. We define Merge(i1,i2) as the interval i = [left, right],
where left = min{lefti,lefta} and right = max{righti,righta}.
Tt is clear that the length of interval i, denoted by len(i), is given
by right — left and the total length of all intervals in I, Length(I),
is given by Zz‘el len(7).

TLet 7 and J be two finite sets of intervals. A net match-
ing M between I and J is a set of ordered pairs of intersect-
ing intervals (i1,51), (42,52), ..., (ix, jr), where A = {i1,d2,...,ix}
and B = {j1,j2,...,Jk} are two sets of distinct intervals from T
and J, respectively. We can replace 41 and j1 by Merge(i1,j1),
replace 42 and ja by Merge(is,j2), ..., and replace 4; and
jr by Merge(ig,jk). After the replacement, the set of in-
tervals I U J becomes Union(I,J) = (I — A)U (J — B) U
{Merge(ii, j1), Merge(ia, j2),..., Merge(ix, jx)}-

The Net Matching Problem is described as follows:

e The Net Matching Problem: Given two finite sets I
and J of intervals (nets), find a matching M such that
Length(Union(I,J)) is minimized.

Based on the weighted bipartite matching theory, we present a
polynomial-time optimal algorithm for the Net Matching Problem.
We reduce the problem to computing the maximum matching in a
weighted bipartite graph. Given two finite sets I and J of intervals,
we construct a weighted bipartite graph G = (U, V, E) as follows.
For each interval i in I (j in J), we introduce a vertex u; (v;) in the
set U (V) of vertices. For each pair of overlapping intervals, p,q,
p € I and g € J, connect up to vg by an edge epq = (up,vq) with
a weight computed by the weight function a : £ — Z7T defined as
follows:

alepg) = min{righty,, righty} — max{lefty,lefty}. (1)
Then we can apply a maximum weighted bipartite matching algo-
rithm [8] on G to solve the Net Matching Problem optimally.

A matching M of a graph H = (V, E) is a subset of the edges
with the property that no two edges of M share the same vertex.
Edges in M are called matched edges; they are unmatched, oth-
erwise. Let Matched(I,J) be the set of the matched edges in a
weighted bipartite matching on the graph induced by the finite sets
I and J of intervals, and Weight(F), F C E, be the total weight
of the edges in F'. We have the following lemma and theorem.

Length(I) + Length(J) —

Segmentation De-

Lemma 1 Length(Union(I,J)) =
Weight(Matched(I,.J)).

Theorem 1 The mazimum bipartite weighted matching algorithm
optimally solves the Net Matching Problem in O((n1 +na)?®) time,
where n1 and na are the numbers of nets in the two input sets.

Example 2 Figure j(a) shows two sets I = {i1,i2,13,i4} and
J ={j1,72,73} of intervals (nets). The induced weighted bipartite
graph is given in Figure 4(b). The span of net i, [left;, right;], is
shown next to its corresponding vertex. The weight for each edge is
computed by the function a and shown beside the edge. The max-
imum weighted bipartite matching M between U = {u1,u2,us3,us}
and V = {v1,v2,v3} is illustrated in Figure 4(b) by heavy lines.
In this example, M = {(u1,v1), (u2,vs),(us,v2)}. Note that uqg
is unmatched. Figure 4(c) shows the resulting configuration of re-
placing i1 and j1 by Merge(i1, j1), i2 and jz by Merge(iz,js),
and i3 and jo by Merge(is,j2). Let l1 = Merge(ii,ji),la =
Merge(iz, ja),ls = Merge(is, j2), and la = i4. After the replace-
ment, the set of intervals IU.J becomes Union(I,J) = {l1,l2,13,la}.
The reader can wverify that Length(Union(I,J)) = len(l1) +
len(l2) +len(l3) +len(la) = 15 is the minimum possible total union
length for merging I and J. (Note that Length(Union(l,J)) =
Length(I) + Length(J) — Weight(Matched(I,J)) = 15).

Note that a(epq) gives the overlap length between intervals p
and q. Intuitively, this weight function measures the “similarity”
between two intervals the greater the weight, the more similar the
two corresponding intervals. By merging intervals with greatest
similarity, we can obtain a most economical (i.e., minimum total
length) set of segments that covers each of two input interval sets.
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Figure 4: A matching-and-merging example. (a) Two sets
of nets. (b) The corresponding weighted bipartite graph. (c)
The matching result for the two sets of nets.

3.2 The Segmentation Design Algorithm

Our design algorithm consists of three stages: (1) the matching-
and-merging stage, (2) the tuning stage, and (3) the filling stage.
In the matching-and-merging stage, we repeatedly apply the afore-
mentioned weighted bipartite matching algorithm to merge input
routing instances and find a set I of intervals that can cover each
of the input routing instances. In the tuning stage, we find a set
I’ of intervals from I, I' C I, which can be packed (routed) into
T tracks. In the filling stage, we determine the switch locations on
the tracks and fill the empty space between each pair of intervals
in the 7" tracks to form a set of segments.

The matching-and-merging stage proceeds in a tree-like bottom-
up manner. (The whole matching-and-merging process is illus-
trated in Figure 5.) Given m routing instances Ri, Ra,..., Rm,
each with respective ni,ns,...,n, nets, we apply the aforemen-
tioned weighted bipartite matching algorithm to merge R1 and Ra,
R3 and R4, Rs and Rs, . ... (See the procedure Match_and_Merge()
in Lines 5 and 8 of Figure 6.) If m is odd, then R,, remains un-
merged. After the merge, the number of resulting instances reduces
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o [m/2]. Then the same merging process repeats for the new
[m/2] routing instances. The process proceeds level by level in a
bottom-up manner until a final merged routing instance is obtained
(see Figure 5).

Iteration k Q* " final merged

result |
Iteration 2
Iteration 1

R Rz Rs4| Rs Rs R7\R3 Rm-1 Rm
merged routlng instances routlng instances

Figure 5: The matching process.

Let Ir be the set of the intervals in the final merged routing
instance. We have the following theorem.

Theorem 2 Igp covers R;, Vi,1 <1i < m.

By Theorem 2, using a set S of segments covering I for 1-
segment routing can route all routing instances Ri1, R2,..., Rm.
As mentioned earlier, however, there is usually a limitation on the
number of tracks 7" in a routing channel. Therefore, it is not always
possible to construct a channel formed by all the segments in S.

In the tuning and the filling stages, we construct a segmentation
of T' tracks from the final merged routing instance I'r. First, we
apply the basic left-edge algorithm [6] to route the intervals in Ip.
(See the procedure Route_by_Left_Edge() in Line 11 of Figure 6.)
We then sort the resulting tracks in the non-increasing order of
their total lengths occupied by the intervals. The first T tracks
are chosen for further construction, and the tuning stage is done.
(See the procedure Tune_Tracks() in Line 12 of Figure 6.) In the
filling stage, we determine the switch locations on the tracks and
fill the empty space between each pair of intervals in the 7" tracks
to form a set of segments. To optimize the routability of a designed
segmentation, it is important to consider the positions for placing
horizontal switches. We have the following theorem to guide the
placement of horizontal switches.

Theorem 3 For the uniform net distribution, a segmented routing
track can cover the mazimum number of nets when switches are
evenly spaced on the track.

Therefore, by Theorem 3, if there is an empty space between
two intervals on a track, we shall place a horizontal switch on the
position that makes the two resulting segments most balanced in
length. The procedure Fill_Space() listed in Line 13 of Figure 6 is
based on Theorem 3 to find optimal positions for placing horizontal
switches. The whole segmentation design algorithm is summarized
in Figure 6.

Theorem 4 Algorithm Seg_Designer runs in O(m®n3) time,
where m is the number of input routing instances and n is the
mazimum number of nets in a routing instance.

For K-segmentation design (K > 2), all we need to do is split-
ting each segment into K sections of equal length right after the
above-mentioned procedures. However, since the minimum length
of a segment is one, it is impossible to partition an interval of length
smaller than 2K — 1 into K segments. Specifically, we can partition
an interval of length [/ into at most [1/2] segments.

Algorithm: Seg_Designer(m, RJ[i], T')
Input: m Number of routing instances;
R[m]—R]i] is the i-th routing instance, 0 < i < m — 1;
T Maximum number of tracks in the channel.
Output: S—The designed segmentation.

Stage 1: Matching and Merging

1 dteration < [log, m];

2 for ¢+ 1to iteration do

3 if (m is even)

4 for j+ 0to m/2—1do

5 R[j] + Match_and_Merge(R[27], R[2j + 1]);
6 else

7 for j« 0to |m/2] —1do

8 R[j] + Match_and_Merge(R[2j], R[2j + 1]);
9 R[j + 1] + R[m — 1];

10 m < [m/2];

Stage 2: Tuning

11 Track[t] <+ Route_by_Left_Edge(R][0]);

12 Track[T] < Tune_Tracks(Track[t]);

Stage 3: Filling

13 S « Fill_Space(T'rack[T]);

14 return S.

Figure 6: The algorithm for segmentation design.

4 Two-Dimensional
sign
Our approaches are very flexible and can readily extend to

higher-order segmentation designs (e.g., two- or three-dimensional
segmentation design, etc) with only minor modifications.

Segmentation De-

We briefly describe how to extend the matching-based algorithm
to the two-dimensional segemtation design. (For the higher-order
segmentation design, the extension is similar.) The most significant
difference between designs for one- and two-dimensional segmenta-
tions lies in the representation of a net. In the one-dimensional
segmentation design, we can simply represent a net x by its span
lefty,right.]. The representation of a net in two-dimensional
channels is more sophisticated. (See Figure 7 for the represen-
tation.) For a p X ¢ (number of logic modules) array-based FPGA,
there are p—1 horizontal and g—1 vertical routing channels. We la-
bel the channels in an array-based FPGA 1,2,...,p—1 from the top
to the bottom, and p,p+1,...,p+ ¢ — 2 from the left to the right.
If a net runs through more than one channel (and/or more than
one track in a channel), we divide the net into a set of subnets, one
subnet for each channel (and/or for each track). Each subnet z; in
channel ¢, is represented by the three tuple [lefts,;, rights;, cz;],
where left;, and right,; are the leftmost and rightmost points of
the subnet. Then, a net can be represented by a set of the three
tuples for its subnets.

The Net Matching Problem described in Section 3 is extended to
handle two-dimensional nets and called The Two-Dimensional Net
Matching Problem. The Two-Dimensional Net Matching Problem
can also be optimally solved by reducing the problem to computing
the maximum matching in a weighted bipartite graph. Given two
finite sets I and J of nets, we construct a weighted bipartite graph
G = (U,V, E) as follows. For each net ¢ in I (j in J), we introduce a
vertex u; (v;) in the set U (V) of vertices. One net overlaps another
if the spans of any pair of subnets of the two nets intersect. For
each pair of overlapping nets, p,q, p € I and g € J, with the respec-
tive subnets {[lefty, ,rightp,,cp, ], ..., [lefty,  Tighty, ,cp, ]|} and
{lleftq,,righte, ,cq,],- - -, [leftq,,Tighty, cq, ]}, connect u, to vg
by an edge epq = (up,vq) with a weight computed by the weight

www.manaraa.com



Net

2/ — @2
2,3,3),

33

C, 3 (3.4, 4)}

npnlin

Figure 7: Represetation of a net in an array-based FPGA.

function 8 : E — Z71 defined as follows:

Blepg) = Z

€p; =C€q;:Pi 4

®(pi,q5), (2)

where ®(p;,q;) = min{righty,,rights;} — max{lefty,,leftq;}.
Then we can apply a maximum weighted bipartite matching al-
gorithm [8] on G to solve the net matching problem optimally. We
have the following theorem.

Theorem 5 The mazimum bipartite weighted matching algorithm
optimally solves the Two-Dimensional Net Matching Problem in
O((n1 +m2)3 4+ rire) time, where n1 and na (r1 and r2) are the
numbers of nets (subnets) in the two input sets.

The algorithm for the two-dimensional segmentation design,
2D_Seg_Designer, is very similar to that for the one-dimensional
design described in the previous section. The design algorithm for
two-dimensional segmentation also consists of the three stages: (1)
the matching-and-merging stage, (2) the tuning stage, and (3) the
filling stage. In the matching-and-merging stage, we repeatedly ap-
ply the aforementioned weighted bipartite matching algorithm to
merge two-dimensional input routing instances to find a set I of
nets that can cover each of the input routing instances. In the tun-
ing and the filling stages, we construct tracks channel by channel
by considering the subnets of I in each channel obtained in the
matching-and-merging stage. For the filling stage, the process is
similar to that for the one-dimensional segmentation design. The
following theorem gives the time complexity of our algorithm.

Theorem 6 Algorithm 2D_Seg_Designer runs in O(m?>(n? + r?))
time, where m is the number of input routing instances and n(r)
is the mazimum number of nets (subnets) in a routing instance.

5 Experimental Results

We implemented our segmentation design algorithms in the
C++4 programming language on a PC with a Pentium 166 micro-
processor and 32 MB RAM. The weighted bipartite matching code
was adopted from the public LEDA package. The routability of
the architectures designed by our algorithms was tested using the
1- and the multi-segment routing algorithms by Zhu and Wong [14].
In addition to the notation mentioned in Section 2, the following
notation is also needed to explain our experimental procedures.

e D: Maximum number of net terminals at a column.
e f(I): Probability that a net is of length I.

The input routing instances were generated by the programs
used in [7] and [14]. The first set of ten net distributions is based on
the parameters L. = 100, 7' = 36, and D = 12 which are close to the
row-based architectures used by Actel FPGAs [1]. Distributions D;,
i =1,2,...,7 are defined as follows. If f(I) = (p1,p2,p3,p4,P5),
then the probability that a net has length between 0.2(j — 1)L
and 0.2jL is equal to pj/ZlSkS5pk' “Ge”, “No”, and “Po” are
geometric, normal, and Poisson distributions, respectively. For each
net distribution, 300 routing instances were generated.

The ratio of routing success was measured by the threshold den-
sity dr defined in [14]. dr means the smallest channel density

d such that less than 90% of the channels with density d in the
distribution are successfully routed.

Table 1 lists the respective comparisons for one- and two-
segment routing between our designs and those in Zhu and
Wong [14] based on the parameters L = 100,7 = 36, and D = 12
which were used in [14]. The results show that our designs outper-
form those in [14] by averages of 24.0% and 12.9% improvements
in routability for one- and two-segment routing, respectively.

The channel segmentation designs in [7] were targeted for array-
based FPGAs. The parameters used for net distributions were L =
20,7 = 18, and D = 6 for two-segment design and L = 50,7 =
24, and D = 8 for three-segment design. The results, reported
in Table 2, show that our method significantly outperforms the
previous work in [7] and [14]. Our designs achieve averages of
17.9% and 8.9% improvements in routability, compared with the
work in [14] and the most recent work in [7], respectively. Figure 8
shows our 1-segment channel segmentation design for distribution
D1 using the parameters L = 100,7' = 36, D = 12, and K = 1.

L=100, T=36, D=12, distribution=D1, k=1

g | _'DI

Figure 8: A channel segmentation designed by our algorithm
(L =100,7 = 36, D = 12, K = 1, Distribution D).

Our design algorithms are quite efficient. The empirical run
times for the largest set of designs (L = 100,7 = 36,D = 12,
and K = 2) ranged from 10 sec for Distribution Ds to 78 sec
for Distribution D7 (with an average run time of about 30 sec).
Although the theoretic analysis gives O(m>n?®)-time complexity for
our algorithm, the empirical run time for the n term is close to
O(nlgn), instead of O(n®). The reason is that most of the nets in
two input routing instances were merged together. Therefore, the
number of nets in a merged instance grew only linearly, instead of
exponentially. In Figure 9, the average number of nets per routing
instance is plotted as a function of the number of iterations (in
the matching-and-merging stage) for each of the ten distributions
listed in Table 1. The curves in Figure 9 exhibit the linearity of the
empirical growth rates for the average number of nets per routing
instance.

6 Conclusion

We have presented a new direction based on the graph-matching
formulation for studying FPGA segmentation design. The ap-
proach is so effective, efficient, and flexible that it can easily extend
to more sophisticated segmentation designs. Future work lies in the
extension of higher-order segmentation designs. Also, the results of
the matching-and-merging stage could be sensitive to the pairing
of input routing instances. The general graph-matching algorithm
might be a promising solution to the best pairing of the routing
instances.
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